Directions: When working each of the following questions, be sure to show all work.

1) Evaluate the expression to find the missing values in the tables.

z	8 ÷ z
1	8
2	4
4	2

2) Write the phrase as a numberical or algebraic expression.

t divided by 5

3) Write the phrase as a numberical or algebraic expression. n times 5

Problems 4-7: Write an expression for the missing value in the table.

(hint: Steps for an Arithmetic Sequence)

step1: What is the outside Pattern?

step2: Multiply the outside pattern with a term.

step3: How do you get to the value next to the term used in step 2?

4) Evaluate the expression to find the missing values in the tables.

Term	Value
1	4
2	5
3	6
n	n+ 3

5) Evaluate the expression to find the missing values in the tables.

Term	Value
3× 1 +1	4
3x 2 +1	\rightarrow 7
3×3 +1-	10
3x n +1	3n+1

6) Evaluate the expression to find the missing values in the tables.

Term	Value
1	4
2	9
3	14 🖊
n	5n-1

7) Evaluate the expression to find the missing values in the tables.

Term	Value
2 x 2	4 🗪
3 x 3	9
4 x 4	16 🜽
n 🔨	N2

8) A triangle has a base of 6 inches. The table shows the area of the triangle for different heights. Write an expression that can be used to find the area of the triangle when its height is *h* inches.

(hint: area of triangle = $\frac{1}{2} bh OR \frac{bh}{2}$)

Base (in.)	Height (in.)	Area (in²)
6	x 1 ÷ 2 =	3
6	× 2 ÷ 2 =	- 6
6	3 ÷ 7 :	9
6	h ÷ -	>36h -> 3h

Problems 9-12: Solve each equation. Check your answers

(hint: 5 Steps)

step1: locate the variable step2: isolate the variable

step3: inverse operation

step4: keep the equation balanced

step5: check your answer.

9)
$$b + 4 = 15$$

 -4 -4
 $b = 11$
 $| 1 + 4 = 15$

11)
$$b \times 10 = 30$$

10)
$$60 = 30 + t$$

12)
$$\frac{30}{6} = \frac{6\pi}{6}$$

$$5 = 0$$

NO CALCULATORS BEYOND THIS POINT

14)
$$20 \div 20$$

15)
$$4 \times 2$$

8

17)
$$10 + 10$$

20

15